
Unit 2: Cellular Chemistry, Structure, and Physiology Module 3: Cellular Structure

NC Essential Standard:

- 1.1.1 Summarize structure and function of organelles in eukaryotic cells
- 1.1.2 Compare prokaryotic and eukaryotic cells in terms of general structures and degree of complexity

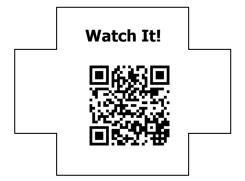
Since every living thing is made of cells, does that mean bigger organisms (like whales or elephants) have bigger cells?

- There are different TYPES of cells (ex. Skin, bone, muscle, nerve), but all cells of a particular type are essentially the same size.
- Therefore, the difference in cells in large vs. small organisms is the NUMBER of cells, not the SIZE!

т	11000		مالم	d:	
I -	π 0w	were	cens	CHSCC	vered?

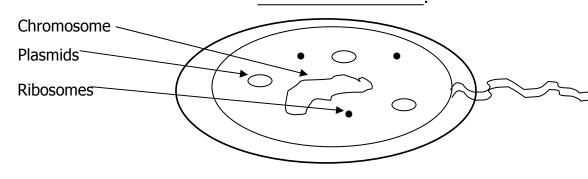
A.	New	technol	logies	lead	to	new	disco	veries
----	-----	---------	--------	------	----	-----	-------	--------

	1.	– Invented the first microscope and was
]		the first to observe and name the small units that make up
		organisms. He called those small units cells because of
		the appearance of the structures in the dead cork he
		observed.
	2.	– Improved the microscope and
		procedures for observing cells. He was able to clearly see
		living cells when observing the scrapings from his teeth.
В.	Through	n the cooperative efforts of many individual scientists, a
	unifying	cell theory developed:


Leeuwenhoek:

9	den ander y developedi	
1.	All organisms are	
2.	Cells are the	_ of organisms.
3.	All cells come from	

II. Are all cells alike?


A. Two main types of cells

1. **Prokaryotic** Cells

- a. _____ type of cell.
- b. Includes only _____.
- c. Structure of a prokaryotic cell
 - i. No _____
 - ii. No membrane bound organelles
 - iii. Includes: _____ (DNA),

plasmids (smaller rings of DNA), and

Prokaryotic	Eukaryotic

2. Eukaryotic Cells

- a. More _____than prokaryotic cells
- b. Includes protist cells, fungi cells, _____ cells and_____ cells (i.e. everything EXCEPT bacteria cells)
- c. Structure of a eukaryotic cell
 - i. _____ contained within a nucleus
 - ii. In addition to ribosomes contains _____

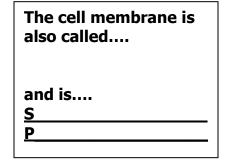
B. Cell Specialization

- Different cells have different specialized structures and different specialized functions. The specialized function of the cell depends on the ______ of the cell.
 - Ex. Fresh water vs. salt water environments

	Drawing of nerve cell:	 The specific form (structure) of a cell allows it to perform a specific function – FORM RELATES TO FUNCTION.
		Ex have branching dendrites
		attached to the cell body to receive messages, and a long,
		thin axon attached to the cell body to transmit messages
	eck Yourself!	
1.	Who first observed dead cells	Who first observed living cells?
2.	What are the two main types	f cells?
3.	How is the location of the DN	different in prokaryotic and eukaryotic cells?
4.	What is cell specialization?	
5.	In cells, form relates to	

What do cells share? III.

- A. Structures found in ALL cells
- 1. **DNA** organized as **chromosome**(s). DNA _____ 4 structures found in 2. **Cytoplasm** is the "______" of the cell and is made of **ALL cells:** up to 90% water. Water provides the necessary 1. environment for all the ______ the cell needs. 2. 3. **Ribosomes** are organelles that are the _____ _______. Proteins are essential for enzymes, 3. structure and communication. 4. 4. Cell membrane (______)

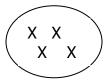


a.	Composed of a phospholipid bilayer	with embedded
	proteins. The	describes the
	structure of the cell membrane.	

- i. Fluid Individual phsopholipds and proteins can move past each other; they are ______in one position.
- ii. Mosaic The membrane has _____of molecule (phospholipids and proteins)
- b. Functions of the cell membrane

i.	Selectively permeable –	regulates	wha
		the cell.	This
	helps maintain homeostasis	5.	

ii. Gives the cell (cytoplasm) _____.

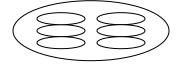


Protein	→ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\)))
Phospholipid		

B. Structures (organelles) found in EUKARYOTIC cells

Organelle means

1. **Nucleus**- _____ for additional protection; is made of a phospholipid bilayer



2.	Mitochondria – site of	which
	produces cell energy (ATP). Structure conta	ins
	which increases surface a	rea allowing
	more space for more reactions.	

	3. Vacuoles – to be used	inside
Summary of	the cell or excreted from the cell. Size differs in p	olant vs.
structure/function:	animal cells.	
Nucleus –		
Mitochondria –	4. Lysosomes – contain whi	ch digest
- modification	food contained in vacuoles as well as old or dama	iged cell
Vacuole –	parts	
Lysosome –		
	5. Endoplasmic Reticulum (ER) – a series of	
ER –	interconnected folded membranes that function in	1
	modifying (changing) proteins, detoxification of a	lcohols,
Golgi –	and	
Chloroplast -		
	6. Golgi Complex – materials for	or export
	from cells.	
C.	Structures found ONLY in plant and plant-like cells	
	1. Chloroplasts – organelles full of chlorophyll that	are the
	site of which produces sugars (C ₆ H ₁₂ O ₆);

Plant only	Animal only

composed of folded membranes for more ______.

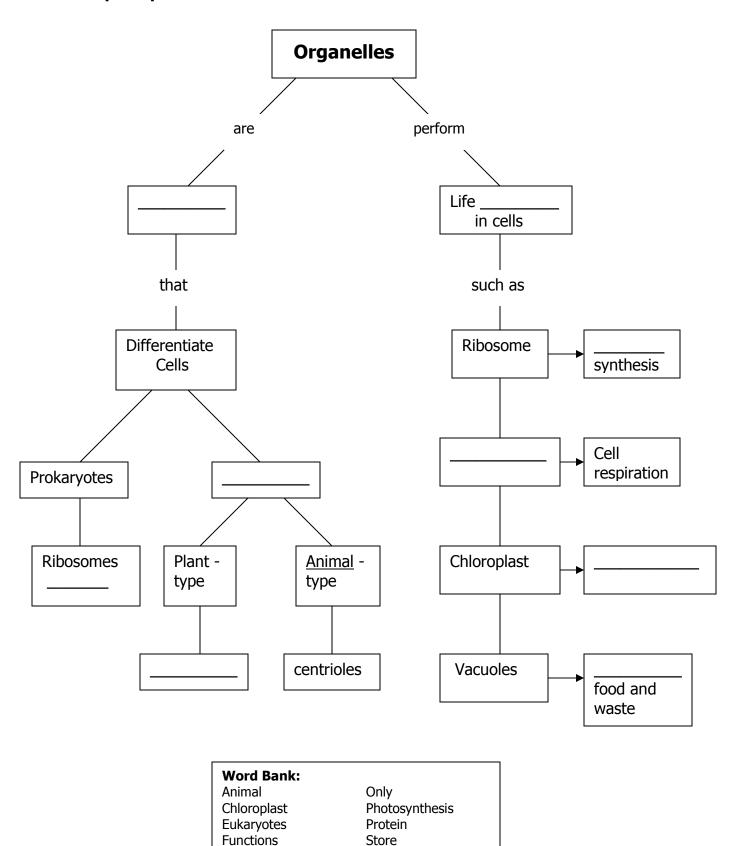
				; found outside	e the cell membrane and
		ma	ade of cellulose		
		D. Structure f	ound ONLY in a	nimal cells	
		Centriole	s – organelle th	at helps with	in animal cells.
	Yourself! at four structures	are found in all c	ells?	[i	
2. Wha	at is the function (of the mitochond	ria?	i i	
3. Wha	at is the function (of a ribosome?) [1	
4. Wha	at term refers to s	small cell structur	es?		THE RECEIPMENT OF
5. Wha	at two structures	are found in plan	t and plant-like	cells?	
	IV.		communicate wi		order to
		A. Cells must		ith other cells in	
	44	Ev. Nouro		•	change in the target cell.
			` ,	must stimulate i	ease stored sugar
					stance between cell
		,,		eptor (target) cel	
			ort Distance Co		•
					to each other
					e cell to send a
			_		irectly to the next cell.
					30

2. **Cell wall** – provides _____

Drawing of	Ex. One heart cell uses an electrical impulse to			
Cell Junction	stimulate neighboring heart cell to contract			
	b. Some cells are separated by a			
	called a synapse . These cells (typically nerve cells)			
	release amessage into the synapse and the			
Synapse	other cell receives the message using special receptors.			
- Зунарэс	Ex. Pain receptor nerve cell sends message to spinal			
	cord nerve causing reflex reaction.			
	2. Long Distance Communication			
	a. Some cells are so far away they must use a			
	such as the blood. Often			
	are used in this type of communication.			
Long distance cell	Ex. A hormone released from the brain stimulates			
communication uses	uterine muscle cell contractions during child birth.			
to affect	b. When long-distance communication is used, the signal			
cells.	must be so that only the target cell			
	will receive the signal. This involves the shape of the			
	hormone and the shape of cell membrane proteins.			
Check Yourself! 1. Name two ways cells that are close to each other communicate. 2. What is the function of a hormone?				
V. How can we observe cells?				
A.	Compound Light Microscope 1. Has – ocular (eyepiece) and objective			
	2. In order to be viewed, specimen must be(so the light			
	E. I. Graci to be viewed, openinell mast be (30 the light			

may shine through the specimen) and placed on a slide.

Label the ocular lens and the objective lens:


		3.	Spe	ecimen	may be to better see st	tructures
В.	Elec	tro	n M	licros	рре	
		1.	Use	es	to produce an image	
		2.	Тур	oes:		
			a.	Scann	ng Electron Microscope (SEM)	
				i.	Electrons scan the surface of a speci	men
				ii	Produces a	
			b.	Trans	ission Electron Microscope (TEM)	
				i.	Designed to look at structures inside	a cell
				ii	Capable of	
C.	Limi	tatio	ons	of mic	scopes	
1. Magnification is limited by the strength of the lens.					ens.	
			a.	Calcul	ting magnification:	
					= total mag	gnification
			b.	Exam	e:	
				Ocul	$r(10x) \times objective (40x) = 400x$	
		2.	As	magnit	cation increases resolution ()
			ded	creases		

Check Yourself!

- 1. Why must specimens be thin for a compound light microscope?
- 2. Which microscope provides the highest possible magnification?
- 3. If the ocular lens is 10x and the objective lens is 10x then the total magnification is?
- 4. As magnification increases resolution ______

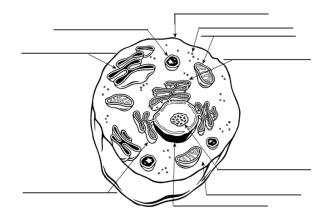
Concept Map: Cell Structure

Structures

Mitochondria

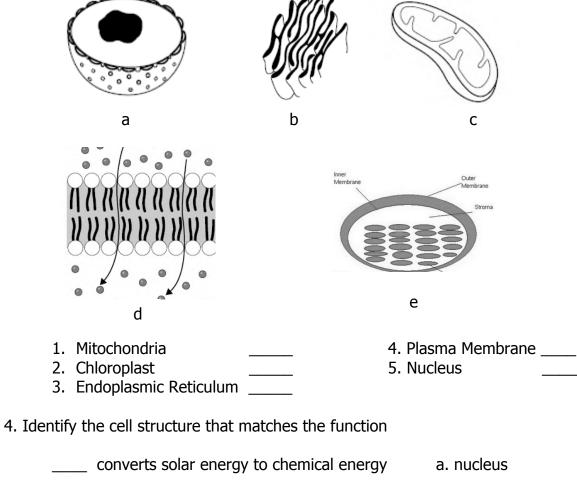
Unit 2 / Module 3 Problem-Solving Set

1. Place the following terms in the correct area of the Venn diagram for cell types using the word bank below:


Nucleus Cell Membrane Cell Wall
Ribosome Mitochondria Cytoplasm (cytosol)
Golgi body Vacuoles Endoplasmic Reticulum
DNA Plasmid Lysosome

Prokaryotic Cells

Both

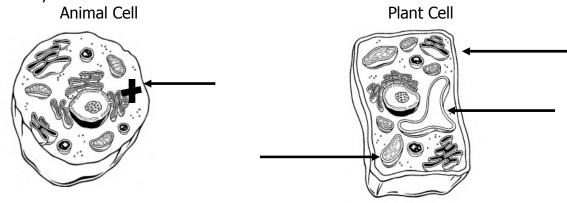

Eukaryotic Cells

2. Label the cell below.

Explain why this cell is considered EUKARYOTIC.	
	•

3. Match the pictures of different cell structures to the correct name.

converts solar energy to chemical energy	a. Hucieus
converts stored chemical energy to ATP	b. vacuole
digests larger food particles and wastes	c. ribosome
stores food, water, or waste	d. mitochondria
location of protein production	e. chloroplast
regulates what enters and leaves the cell	f. lysosome
contains chromosomes	g. cell membrane


Image Credits:

http://www.ivytech.net/twmurphy/text_pg/pro_cell.jpg

Prentice Hall Review Book - Version B

http://www.cs.utexas.edu/users/almstrum/cs373/s2s/cs373-class/s2s/latest/recursion1/images/doc/cell_euk.gif

5. Label the plant and animal cells below with the distinguishing structures indicated by arrows.

	fy the cell structure that would be most useful for the proper functioning lls below.
	a. White blood cells must capture and digest invading pathogensb. Liver cell of a human must be able to detoxify substances ingested and therefore requires a large network of tubules for surface area to break down toxins.
	c. Cactus plant cells are adapted for storage of large amounts of water in case of drought.
	d. Plant cells in the leaves face the sun and produce large amounts of carbohydrates for use in winter.
	e. Red blood cells must make massive amounts of hemoglobin (a protein) that is necessary for your cells to carry oxygen. f. Muscle cells of your upper arm need lots of energy to contract during the day.
	g. Cells of the digestive tract that secretes digestive enzymes, produce and package vacuoles of digestive enzymes for secretion into the small intestines.
7. Ident	ify the type of communication the cells below might use. Junctions Synapses Transport System
a.	When someone pinches the skin on your arms, your skin stays connected.
b.	When you grow (increase in height) the message must be received by many different tissue types all over the body (ex. bone, skin, muscle). The signal for this growth is sent out via a growth hormone.
C.	In order for your muscles to contract, the muscle cell must be

stimulated by a nerve. The nerve and muscle cell do not touch, a

chemical messenger carries the signal a very short distance.