Unit 2: Cellular Chemistry, Structure, and Physiology Module 5: Cellular Reproduction

NC Essential Standard:

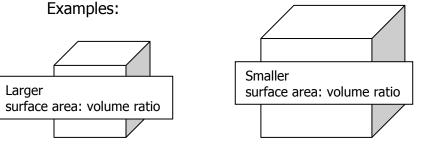
- 1.2.2 Analyze how cells grow and reproduce in terms of interphase, mitosis, and cytokinesis
- 2.1.2 Analyze the survival and reproductive success of organisms in terms of [reproductive] adaptations
- 3.2.1 Explain the role of meiosis in sexual reproduction and genetic variation

1) P

Since we say family members are "blood" relatives, does that mean we share the same blood?

- You share no blood with anyone....not even your mother and father! Your family shares DNA.
- ½ of your DNA came from your mother (egg) and ½ from your father (sperm).
- The process that made this possible is **MEIOSIS** which makes the sperm and egg.
- A fertilized egg then grows into an organism by a different process of cell division called MITOSIS.
- I. Why do cells divide?

Α.	Cells d	ivide t	o maintain	a workable		
,	CCIIC G	. v .ac c	.o manneann	a montable	 	


- 1. Volume is the amount of space _____ of a cell. This would include the cytoplasm and all of the organelles.
- 2. Surface area is the total amount of _____ which is exposed to the environment around the cell. This would include the outside of the cell membrane.
- 3. Volume increases faster than surface area. The surface area must be large enough for a sufficient amount of materials to enter the cell. The materials must enter quickly enough that all of the cell will get what it needs.

Thus, a _______Examples:

51

cell sizes pictured is preferable.

EXPLAIN which of the

2	rea	SOI	าร	that	t ce	ells
n	haa	to	di	vida		

- 1.
- 2.

1.	of a multicellular organism requires the addition
	of cells. Larger organisms do not necessarily have bigger
	cells, but they will have more cells than smaller organisms.

- 2. ______ of damaged tissues by replacement of cells lost due to injury or cell death requires cell division. A healthy cell will divide to replace the lost cell(s).
- 3. Cell division occurs at ______ depending on the organism and the type of cell.
 - a. Plant root cells would divide ______ because this is an area of active growth.
 - b. Some ______ enter a phase of no division.
 - c. Some ______. For example,
 E. coli can divide every 20 minutes in ideal conditions.

Watch It! II. Ho

How do cells divide?

A. Prokaryotic vs. Eukaryotic Division

B. Cells divide to make more cells

1.	The result of all cell division is the production of daughter						
	cells . In order for the d	laughter cells to contain enough					
	DNA, the	(DNA) of the parent cell					
	must be	_·					

- Prokaryotic division differs from eukaryotic division
 because ______ or
 membrane-bound organelles.
- 3. Eukaryotic division requires the _____ and genetic material (DNA) as well as the allocation of the organelles into each daughter cell.

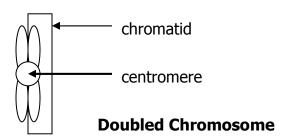
B. Eukaryotic Cell Cycle and Mitosis

Differentiate between.. Chromatin –

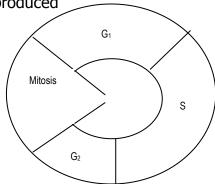
Chromatid -

Chromosome -

Summary of the cell cycle


- 1. Interphase
 - i.
 - ii.
 - iii.
- 2. Mitosis
 - i.
 - ii.
 - iii.
 - iv.

3.


On the diagram of the cell cycle, HIGHLIGHT the stages that are part of Interphase.

- Interphase is the "normal" part of the cell cycle. The cells spend _______ (life of the cell) in interphase. There are three stages in interphase
 a. G₁ Cell ______ and synthesizes new proteins and organelles.
 - b. **S**
 - During most of interphase DNA exists in a
 "relaxed", ______ form called **chromatin**.

 After being copied, there are two complete
 copies of the DNA in the cell. These copies
 are attached to each other.
 - ii. Each copy of DNA is called a **chromatid**. The two ______ in a region called the **centromere**. At this point in interphase, the chromatids are coiled / condensed. The entire structure is called a **doubled chromosome**.

c. $\mathbf{G_2}$ – _____ and molecules required for cell division are produced

2. S	tages of Mitosis ()
a.	Prophase
	Coiled become visible
$\left(\begin{array}{c} \left(\begin{array}{c} x & x \end{array}\right) \right)$	Nuclear membrane is
(• (protein fibers that will
	attach to chromosomes and aid in chromosome
	movement) start to form
b.	Metaphase
$\left(\begin{array}{c} X \\ Y \end{array}\right)$	Spindle fibers attach to the regions
X	Chromosomes are moved to the of the cell
C.	Anaphase
	Spindle fibers
× >	Doubled chromosomes are into
>)	chromatids
	Chromatids begin to/ends
	of the cell
d.	Telophase
// <<	Spindle fibers are broken down
\\	• around the
	clusters of chromatids at each pole of the cell
3. C	ytokinesis is the (including
al	l organelles) into two identical daughter cells.
$\left(\bigcirc \right) \left(\bigcirc \right)$ a.	Animal cells constrict in the middle to
	forming two different cells.
b.	Plant cells also produce a cell plate dividing the two
	cells. This cell plate will become the

C. Mitosis and Cancer

Cancer is caused by uncontrolled, which may occur because of 1.					
2.					
3.					

1.	Typically, cell division is	in the cell
	contact with other cells, and available nutrients in	n the
	environment.	
2.	Cancer is a class of diseases characterized by	
	and the ability of these cel	ls to
	invade other tissues.	
3.	Cancer occurs when the genes that control cell d	ivision
	This may occur	because
	of an inherited genetic defect, a spontaneous gen	netic
	mutation, or a mutation caused by environmenta	I factors.

Check Yourself!

- 1. Why is a large surface area: volume ratio preferable?
- 2. Name three reasons cells must divide.
- 3. Why is eukaryotic cell division more complex than prokaryotic cell division?
- 4. What are the two basic stages of the cell cycle?
- 5. How is the genetic material "prepared" for cell division during interphase?
- 6. How many daughter cells are produced as a result of mitosis, and how do these cells compare to the parent cell?
- 7. How are mitosis and cancer connected?

A. As	sexual rep	production and cell division	
	1. As	exual reproduction is reproduction in	volving only
		(i.e. or	ne parent). This
	me	eans that offspring will be genetically	to
<u> </u>	the	e parent, or clones .	
Simple pictures of asexual reproduction:	2. Th	ere are several types of asexual reprodu	uction:
-	a.	Binary fission occurs when a unicellu	ılar organism
Binary fission		(such as bacteria or an amoeba)	
		for the purpose	of reproduction.
Budding	b.	Budding occurs when simple organism	ns (such as yeast
-		or hydra)	than those of
		the parent organism.	
Sporulation	C.	Sporulation occurs when an organism	n (such as
		mushrooms) produce spores –	_
		for the purpose of reproduction.	
Vegetative Propagation	d.	Vegetative propagation occurs whe	en a
		in order	to produce
		another plant.	
Regeneration	e.	Regeneration occurs when a	(such
Regeneration		as an earthworm)	to produce
		a new organism.	
	3. Ad	vantages and Disadvantages of Asexual	Reproduction:
	a.	Advantages of asexual reproduction in	clude
		of reproduction and producing multiple	e copies of
		successful genetic combinations.	
	b.	Disadvantages of asexual reproduction	ı include
		increased risk of a single factor affection	ng an entire
		population due to	•

Why does reproduction require two types of cell division?

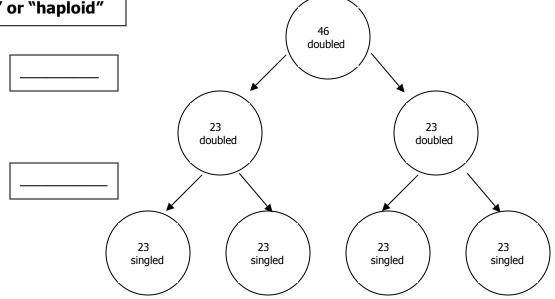
III.

4. _____ is usually the mechanism that allows asexual

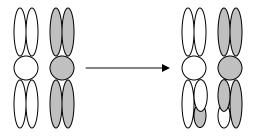
reproduction to occur. For example, when an earthworm

			is	cut in half, cells must use mitosis to divide in order to
			pro	oduce cells which will reconstruct the missing portion.
	В.	Sexual	repi	roduction and cell division
		1.	. Se	exual reproduction is reproduction involving
	Picture of fertilization:			(i.e. two parents). This
			me	eans that offspring will be genetic combinations of the
			tw	o parents.
			a.	Gametes are, such as sperm and egg.
				The purpose of a gamete is to fuse with another
L				gamete to combine genetic material ().
			b.	A zygote is the cell which is produced by fertilization.
				The
		2	. Ad	Ivantages and Disadvantages of Sexual Reproduction:
			a.	The main advantage of sexual reproduction is
Summary: Advantage Disadvantage With many genetic possibil			With many genetic possibilities, the	
Advantage Disadvantage			likelihood of a successful combination of traits for a	
Ase	kual			particular environment is high.
			b.	The disadvantages of sexual reproduction include the
Sex	ual			for fertilization (which
				requires more time) and the risks of unfavorable
			J	genetic combinations.
		3.	. Alt	though sexual reproduction begins differently than
			as	exual reproduction (with two parents as opposed to one
			pa	rent), sexual reproduction
			a.	Meiosis is a type of cell division which produces
				gametes. Meiosis is a unique type of cell division
				because it, allowing
				for fertilization.

Example: Human body cells contain 46 chromosomes.


In order for a zygote (fertilized egg) to

Job of meiosis –			contain 46 chromosom	nes, the sperm and egg			
			must each contain only 23 chromosomes.				
Job of mitosis -		b.	b. Mitosis is the process which allows the zygote to beg dividing to produce a The ce also must differentiate (become different types of cel				
			to carry out different functions).	,,			
	heck Yourself! . How many sources of genetic ma	ateria	al are involved in asexual reproduc	ction?			
	In sexual reproduction?						
2	2. Name five types of asexual reproduction.						
3	. Why is mitosis necessary for asex	xual	reproduction?				
4	. Name one advantage and one di	sadv	rantage of asexual reproduction.				
5	5. What are gametes? How is a zygote produced from gametes?						
6	5. Name one advantage and one disadvantage of sexual reproduction.						
7	. How are both mitosis and meiosi	s ne	cessary for sexual reproduction?				


IV. How does meiosis produce gametes?					
Α. Ι	Recall th	at a gamete is very different from a somatic (body) cell.			
	1.	A somatic cell is diploid , which means it contains			
		These chromosome pairs are			
		called homologous chromosomes . For example, a			
		human has 23 types of chromosomes. A human somatic			
		cell has 46 total chromosomes, consisting of 23			
# of chromosomes in a human		homologous pairs.			
	2.	A gamete is haploid , which means it contains only			
DIPLOID cell		(one from each homologous			
HAPLOID cell		pair). For example, a human egg cell (ovum) contains 23			
		total chromosomes.			
В.	Eukaryo	tic Cell Cycle and Meiosis			
	1.	At the end of interphase (the longest part of the cell cycle			
		in which the cell completes normal life functions), the cell			
		This creates doubled chromosomes.			
		The cell is now ready to divide.			
	2.	Meiosis requires two cell divisions:			
		a. Meiosis I is called the reduction division . In this			
		division, the			
		The end result of Meiosis			
		I is two daughter cells, each of which is haploid but			
		contains doubled genetic material.			
		b. Meiosis II uses the same basic steps as mitosis. In this			
		division, the doubled chromosomes are separated. The			
		, each of			
		which is haploid and contains no duplicated DNA.			

Label each of the cells in the diagram as "diploid" or "haploid"

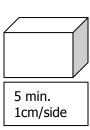
c. Graphical representation of Meiosis:

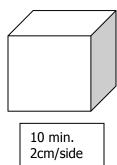
- 5. Meiosis provides several sources of **genetic variation**:
 - a. Gene mutations can occur during the ______
 at the end of interphase before meiosis (or mitosis) begins.
 - b. **Crossing over** occurs when the homologous pairs come together during Meiosis I. In crossing-over a part of one chromosome can ______ with the same part of the homologous chromosome. Then, when the homologous pairs are separated, each chromosome will be different than the original.

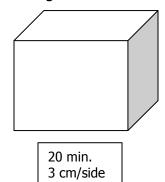
Su	mma	ary (of	sou	rces
of	gene	etic	va	riat	ion:

- 1.
- 2.
- 3.
- 4.
- 5.

C.	Random assortment of chromosomes into daughter
	cells during Meiosis I allows for a
	inherited from each parent.
d.	Nondisjunction, when homologous chromosomes do
	not properly separate, may occur during Meiosis I,
	creating a gamete with
e.	The random fertilization of any one egg by any one
	sperm allows for in
	offspring.
Check Yourself! 1. How is the chromosome number of a ga	amete different from the chromosome
number of a somatic cell?	
2. What types of cells are diploid? Haploid	d?
3. What is the purpose of meiosis?	
4. What is another name for Meiosis I?	
5. How is the purpose of Meiosis I differer	nt from the purpose of Meiosis II?
6. Name five sources of variation meiosis	provides.
7. Describe crossing-over.	


Comparing Mitosis and Meiosis

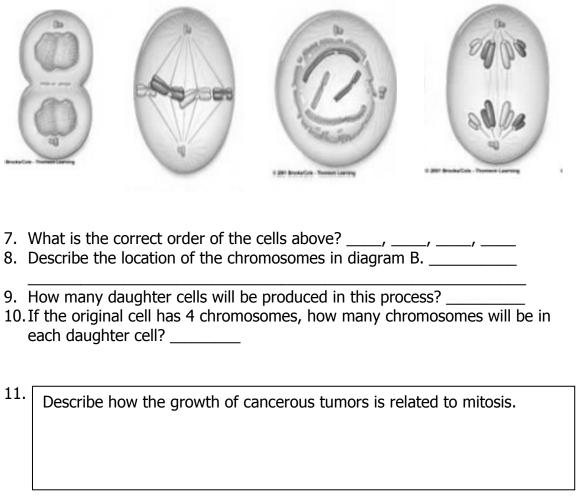

Put an "X" in a box to indicate if the statement applies to Mitosis or Meiosis. If the statement applies to both, put an "X" in both boxes.


Characteristic	Mitosis	Meiosis
A cell with 8 chromosomes would create two cells with 8		
chromosomes each		
Two divisions		
Farm developer allegers and desert		
Four daughter cells are produced		
Used for growth and asexual reproduction		
Used for sexual reproduction		
One division		
Two daughter cells are produced		
The chromosome number is maintained from parent to daughter cells		
Creates identical daughter cells		
No regulation of the process can lead to cancer		
Daughter cells are not identical to the parent cell		
Produces gametes		
Takes place in somatic cells		
Chromosomes move around in the cell during different phases		
DNA is duplicated before the process begins		
Type a unicellular organism would most likely use		

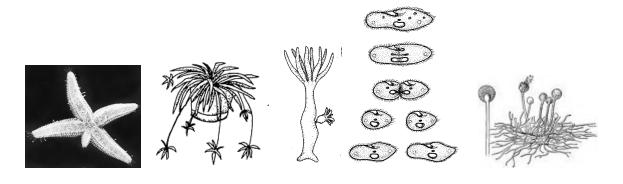
Unit 2 / Module 5 Problem-Solving Set

The diagrams below show a plant cell at different stages of cell growth. For questions 1-5, use the diagrams to answer the questions:

1. Surface area is calculated by the formula length x width x 6. Calculate the surface area for the cell at each time.

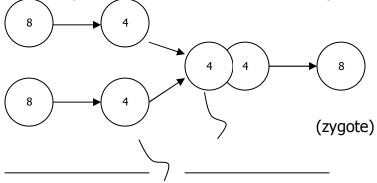

a.	5 min.	cm ²
b.	10 min.	cm ²
С.	20 min.	cm ²

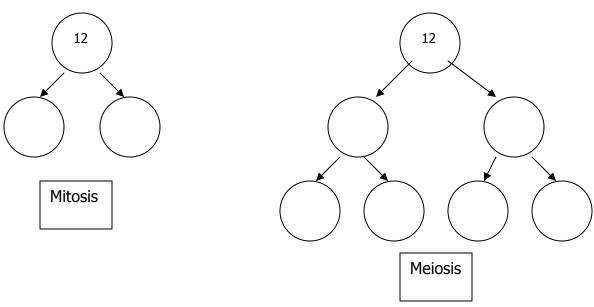
2. Volume is calculated by the formula length x width x height. Calculate the volume of the cell at each time.


a.	5 min	cm ³
b.	10 min.	cm ³
c.	20 min	cm ³

- 3. What is the surface area: volume ratio for the cell at each time?
 - a. 5 min.
 b. 10 min.
 c. 20 min.
- 4. At which time is the surface area: volume ratio the <u>largest</u>?
- 5. At which time will diffusion of materials into the cell be <u>least</u> effective?

			© Day, Mudd, Werstlein
6.		hown below, OUTLINE the are HADE IN the area that represe	
			LABEL each cell with the correct surface area: volume ratio using the choices below: a. 2:1 b. 3:1
Us	e the diagrams of a cel	I undergoing mitosis to answer	questions 7 – 10:
	A B	C	D
	,,	G	_


12. Identify the type of asexual reproduction being shown:


13. For the chart below, place an X in the column to indicate if the statement applies to sexual or asexual reproduction. If the statement applies to both, put an "X" in both boxes.

Characteristic	Sexual Reproduction	Asexual Reproduction
Produces genetically identical offspring.		
Mitosis is the mechanism which allows this to occur.		
Requires mating for fertilization of the egg.		
Two genetic sources are combined to produce offspring.		
Typically begins with meiotic division to produce gametes.		
The main advantage is genetic variation.		
Increases the size of the population.		

14. Which two processes are shown below? Write your answers on the lines.

Use the following diagrams for questions 15 - 18

- 15. Using the number of chromosomes in the parent cell, write the number of chromosomes that would be found in each cell.
- 16. Color all diploid cells red and all haploid cells blue.
- 17. If this **meiotic** division was occurring in a **males** body, what type of cells would the "daughter" cells be? _____
- 18. Which type of cell division shown above would be used to heal a wound?

For questions 19-23, identify the source of genetic variation being described. Each source (gene mutation, crossing over, random assortment of chromosomes, nondisjunction, and random fertilization) will be used just once

nondisjunction, and random fertilization) will be us	sea just once.
Description	Source of genetic variation
19.A male fruit fly produced 500 sperm cells.	
The female fruit fly produced 100 egg cells.	
Only 50 of that males sperm cells were used to	
fertilize 50 of the females eggs.	
20.A daughter cell of meiosis was produced with	
one additional chromosome (one too many)	
21.Each sperm cell produced in the male cat's	
body has a combination of genes from his	
mother cat and his father cat	
22. The DNA was not duplicated exactly before	
meiosis.	
23.After Meiosis I, a chromosome is different	
than the original	
	·

Image Credits

http://www.biology.iupui.edu/biocourses/N100/images/8mitosiscropped.jpg

http://tonkydesigns.com/blog/wp-content/gallery/2009-random/animal-cell-diagram-wall-sticker-silo2.jpg