Unit 3: DNA and Genetics

Module 6: Molecular Basis of Heredity

NC Essential Standard

 3.1 Explain how traits are determined by the structure and function of DNA

How much DNA is in my body?

- DNA is found in every cell (except red blood cells)
- Each cell contains roughly 2 meters of DNA containing ~3 BILLION base pairs
- The human body has ~ 10,000,000,000,0000 cells

protection.

- If you unraveled all the DNA from all of your cells and stretched it out end to end, it would stretch to the sun and back several times!
- You could fit 25,000 strands of DNA side by side in the width of a human hair!

I. What is **DNA**?

A. Importance of DNA

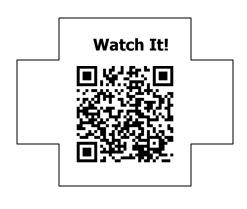
1.	DNA stands for ${\bf deoxyribonucleic}$ acid.	It is one of two
	found in the cell.	

2.	DNA is the blueprint for life.	Every living thing uses DNA
	as a	For
	example, DNA contains the i	nstructions for making special

proteins (called pigments) which give your eyes color.

- DNA is packaged in **chromosomes**. Each chromosome is composed of _______. The DNA molecule is wrapped around proteins and coiled tightly for
- Remember, chromosomes are found in the ______ of eukaryotic cells. Prokaryotic cells have a single chromosome free-floating in the cytoplasm.

П	N	۸
U	IЛ	H


What?

Where?

Used for?

B. Discovery of DNA structure

1.	Many scientists worked to determine the source of		
	heredity. Heredity is the passing of traits from parent to		
	offspring. But how are those traits passed?		

a.	First, scientists determined that chromosomes
	and are made of DNA and proteins.
b.	Then, scientists determined DNA was the chemical tha
	(traits) of the organisms

c.	Then, the race was on to reveal the
	of the DNA molecule.

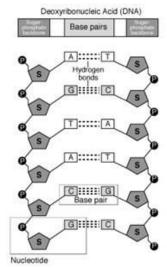
2.	Rosalind Franklin was the first to take a clear "picture" of		
	DNA using a technique called The		
	"picture" offered a clue to the of DNA.		
3.	received credit for finalizing the model of		
	DNA by using the picture taken by Franklin (given to them		
	by Franklin's research assistant – Maurice Wilkins), and by		

synthesizing work completed by other scientists.

C. Struct

(From small to large)	
N base + sugar + phosphate	
N	
Two strands held by	
DH	

ture of the DNA molecule					
1.	D۱	IA is a do	ouble helix . The double	helix looks like a	
			·		
2.	Th	e buildin	g blocks of DNA are called	nucleotides. A	
				:	
	a.	Α	(named deo	xyribose)	
	b.	A phos	phate group		
	c.	One of	nitrogen bases.	The four possible	
		nitroger	n bases in a DNA molecule	are named:	
		i.	Adenine ()		
		ii.	Thymine ()		
		iii.	Guanine ()		
		iv.	Cytosine ()		


3.	There are		iı	n every DNA
	molecule h	eld together by	weak hydrogen b	onds that
	occur in th	e middle		
4.	The nitroge	en bases bond ir	n a specific way	bonds
	with	(A–T)	bonds with _	(G-C).

This pattern is called **complementary base pairing**.

On this diagram, highlight a nucleotide.

Then write out the NAME of the sugar beside one of the sugar molecules.

Finally, draw a box around the "backbone" and label.

coris.noaa.gov/glossary/ nucleotide_186.jpg

Check Yourself!

- 1. How is DNA connected to your traits?
- 2. What larger structure is composed of DNA?
- 3. What two parts of the nucleotide make up the sides (backbones) of a DNA molecule?
- 4. What makes up one rung/ "step" of the DNA "ladder"?
- 5. What type of bond holds the rungs together?

II.	Do all my cells have the same DNA?	
	A. DNA replication for new cells	
Watch It!	1. DNA is to make necessary	proteins.
	2. Because DNA is so important, when a cell divides	, it must
96.13.70 PM	pass on an of the DNA to function	correctly.
	3. Therefore, DNA is copied (replicated) during the	
IN DECEMBER	(part of interphase, before mitosis	/meiosis).
	B. Process of DNA replication	
	1. An breaks the weak hydrogen bone	ds
	between the paired nitrogen bases. This allows I	DNA to
Enzyme Review!	"" as the two strands move apart.	
What <u>are</u> enzymes?	2. The (A-T	and G-C)
	with extra nucleotides present in the nucleus. The	nis process
How do enzymes work?	is catalyzed by another enzyme.	
WOIK:	3. Enzymes then along the	ne newly
	constructed side of the DNA ladder by bonding su	ugar to
	phosphate.	
	4. The DNA is by enzymes for a	any errors.
	C. Result of DNA replication	
	1. Two identical DNA molecules have been produce	d. Each
Replication What?	"daughter" DNA molecule is composed of one "_	″ strand
	and one "" strand. (Here a "strand" refers	to one
Where?	chain of nucleotides.)	
Used for?	2. Each copy of DNA is on	a doubled
	chromosome.	
When?	3. After mitosis,	
	This happens when th	e doubled
	chromosome is split, each new chromosome goin	ıg to a
	new daughter cell.	

	©	Day, Mudd, Werstleir
Check Yourself!		
1. Why does each o	cell need DNA?	
2. What is the name	ne of the process which makes a copy	
of DNA?		等級化
3. When does DNA	replication occur?	
4. What catalyzes e	each step of DNA replication?	
5. At the end of DN	NA replication, each molecule is composed of one	
strand and one	strand.	
III.	How can DNA be used by the cell to make a protein? A. Importance of protein synthesis	
/hat is a trait?	1. Every	
	Protein synthesis is the process that make	s those proteins.
ow are the terms	2. Each cell must	, based on the
orotein" and "trait" elated?	function of that cell. For example, only bl	ood cells need to
iluttu:	produce the protein hemoglobin.	
	B of Biology – the central ax	is around which
	all other biological concepts rotate	
	1. DNA structure controls the production of p	
	a. A which is used	l as the blueprint
	or code for the production of a proteir	ı is a gene .

Three DNA nucleotides makes a
One codon controls the placement of one
Many amino acids

	en bases. For example,						
	ACGCCATGCTAC						
c.	Every in this	sequence is called a codon					
	A codon is like a single	in a sentence. Only by					
) in the correct order can						
	you create a meaningful sentence (protein).						

b. Each gene is composed of a _____

_____. This sequence can be represented by

Rewrite the "Central
Dogma" as a sentence
(use all of the words!)

d. Proteins are made of ______. Each codon directs the cell to place a specific amino acid in a particular position as the protein is built. For example, the codon CAA in DNA codes for the amino acid "valine". If this codon was the third codon in a gene, valine would be the third amino acid in the protein.

"valine". If this codon was the third of
valine would be the third amino acid i
2. Diagram of the Central Dogma

C. Process of protein synthesis

	33 of protein synthesis						
1.	Tra	anscription as messenger RNA					
	a.	DNA cannot leave the (it is far too big					
		to go the ribosomes where proteins are made. Thus, i					
		must					
	b.	mRNA copies the DNA when the					
		One gene makes one protein					
	c.	messengerRNA is constructed one nucleotide at a					

time using one side of the DNA as a ______.

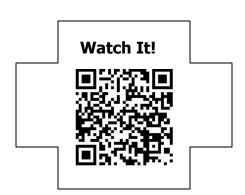
d. All RNA has a different sugar (**ribose**) which cannot

bond to thymine. Thus, RNA must use a ______ (uracil) as a substitute for thymine (T).

If the DNA read CTA, the mRNA would be GAU.

e. _____ through a small opening in the nuclear membrane called a pore.

f. The DNA rezips the ______.

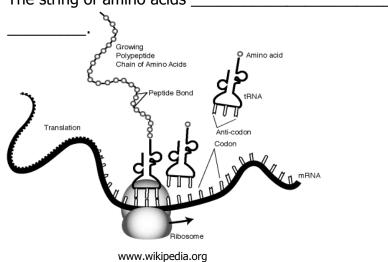

How does transcription produce a "script" based on DNA?

biology.unm.edu//images/transcription.gif	<u>mRNA</u>
14554558885	
T S S A	DNA DNA

Highlight the mRNA.

Explain this diagram.

How does translation "read" the "script" produced in transcription?


Highlight the protein.

Explain this diagram.

2.	Tra	Translation uses the mRNA to				
	a.	In the cytoplasm of the cell, translation occurs at the				
		Ribosomes are made of rRNA				
		(ribosomal RNA) and proteins.				
	b.	The mRNA "" codon (AUG) attaches to the				
		ribosome. The ribosome holds mRNA and helps link				
		amino acids together to make a protein.				
	c.	tRNA (transfer RNA) is a molecule that				
		In order for the tRNA to leave the				
		amino acid at the ribosome, the tRNA must bond with				
		a complementary codon on the mRNA.				
	d.	The ribosome allows the tRNA anticodon (made of				
) and the complementary				
		mRNA codon to pair.				
	e.	The amino acid is removed from the tRNA by an				
		enzyme. As each new amino acid arrives on a tRNA,				
		by a peptide				
		bond to form a polypeptide.				
	•					

f. When the ribosome reaches a "stop" codon, it releases the mRNA and the string of amino acids separately.

The string of amino acids _______

What is the END RESULT of protein synthesis?

If gene regulation were not possible, would cell specialization happen?

Why/why not?

3.	Re	sult of p	rotein synthesis						
	a.	a. Cells respond to their environments by product							
	b.	The cel	produces proteins that are(formin	ıg					
		part of	the cell materials) or(such a	as					
		enzymes, hormones, or chemicals for in cell chemistry).							
	c.	All of an organism's cells have the same DNA, but the							
		cells dif	fer based on the	_•					
		i.	Multicellular organisms begin as						
			undifferentiated masses of cells	_					
		ii.	Different types of cells expressing different	•					
			genes leads to differentiation. Only						
			in thos	se					
			cells. Once a cell differentiates, the process						
			cannot be reversed. For example, we have						
			muscle cells, nerve cells, and others.						
		iii.	Gene regulation is the process which						
			(used to make a protein). This can be	-					
			affected by the cell's history and/or						
			environment. Proteins may be overproduced	d,					
			underproduced or produced at incorrect						
			times. Ex: Injury repair and cancer						
	d.	Each in	dividual in a sexually reproducing population						
		has	of nucleotides in DNA	Α					
		when c	ompared to other organisms of the same						
		specie.	The different sequences lead to						
			(i.e. variation). Fo	or					
		example	e, two humans with different eye color.						

Check Yourself!

- 1. What controls inherited traits?
- 2. What controls the production of proteins?
- 3. Define a gene.
- 4. Diagram the central dogma of biology.
- 5. What is the purpose of transcription?
- 6. What type of RNA is used in transcription?
- 7. What nitrogen base in RNA is used as a substitution for thymine?
- 8. What is the purpose of translation?

IV.

- 9. What two types of RNA are used only in translation?
- 10. What type of bond links amino acids?

Why does a change in DNA mean a change in the protein could happen? Whth appensw henp roteins ynthesisg oesw rong_?

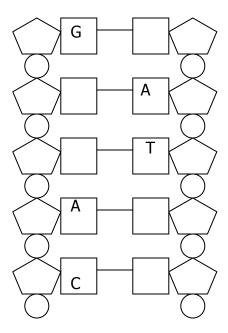
A.	A mutation is a	, which may
	lead to a change in the amino acid sequence.	

- B. A mutation occurs when the original DNA sequence is ______ during replication or protein synthesis. Mutations can be spontaneous or caused by radiation and/or chemical exposure.
- C. The result of a mutation is a change in the amino acid sequence.

 The ________. This can change the traits of the cell or organism. Only mutations in sex cells (egg and sperm) or in the gamete can result in heritable changes.
- D. There are ______ of gene mutations:
 - - Ex. GATTACA \rightarrow GAGTACA

a. A point mutation, if it occurs on a gene, may result in

the change of a _____ within the protein.


	b	, a disease that results in misshapen
		red blood cells, is caused by a point mutation.
	2. I	Frameshift mutations occur when a single base is
	(addition frameshift) or (deletion frameshift)
Compare/Contrast point and frameshift mutations using a Venn or T-chart:	r B a	within the sequence. Because DNA and the mRNA copy are read three bases (a codon) at a time, this type of mutation "shifts" the x. GAT/TAC/ATT → GAT/TAA/CAT/T The effect of a frameshift of the addition or deletion. The earlier within the gene sequence the base is added or deleted, the more amino acids will be changed. , a disease that results in the progressive loss of nervous system function, may be caused by the insertion of several bases.
Check Yourself! 1. Define mutation. 2. What is the result of a mut	ation î	
	ustra	ted in the title of this section of notes (IV)?

DNA's Two Jobs						
Replication	Both	Protein Synthesis				
 Replication Takes place in the Occurs before Produces two strands of DNA Uses the entire 	• Uses DNA • needed • Can produce	 Protein Synthesis Takes place in the and cytoplasm () Occurs during the of the cell Produces Uses a section of the DNA molecule called a Uses 3 types of 				
		(rRNA, mRNA, tRNA)				

Word Bank: Cell Division DNA molecule Enzymes	Gene Identical Mutations	Normal life Nucleus Nucleus	Proteins RNA Ribosome

Unit 3 / Module 6 Problem-Solving Set

- 1. On the DNA diagram below:
 - a. Place an S in each shape that indicates sugar (deoxyribose)
 - b. Place a P in each shape that indicates phosphate
 - c. Complete the missing nitrogen bases
 - d. Write an HB on a line that represents a hydrogen bond
 - e. Draw a box around one nucleotide

- 2. Every living organism has DNA. ALL DNA is made of 4 types of nucleotides. What makes human DNA different from oak tree or frog DNA?
- 3. A molecule of DNA is analyzed for its adenine content and is found to contain 22% adenine. What is the content of the other 3 nitrogen bases?

Adenine – <u>22%</u>

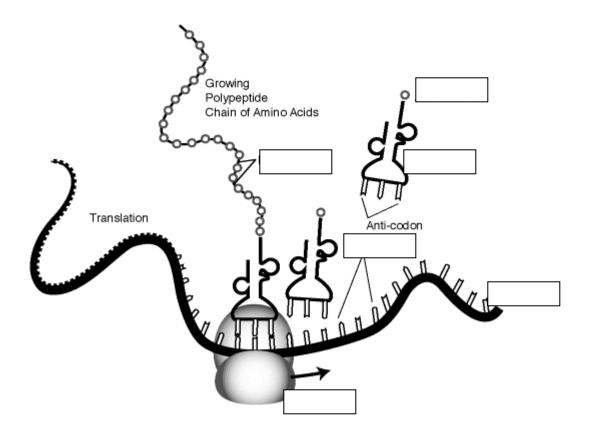
Thymine - _____

Guanine - _____

Cytosine - _____

4.	Put the steps	of DNA	replication	in the	correct	sequence:

Free nucleotides pair with newly unpaired nucleotides
The DNA molecule "unzips"
Enzymes break hydrogen bonds
Enzymes "re-zip" the DNA molecule


_____ Two identical molecules of DNA are complete

5. In the sequence below, what is the molecule labeled "A"? The molecule labeled "B"?

Α	-	B→	Protei
	(transcription)	(translation)	
Δ	=	R -	

6. Label the diagram of Protein Synthesis using the following terms:

Ribosome mRNA tRNA Codon Amino acid Peptide bond

mRNA codon chart:

First	Second Letter				
Letter	U	C	A	G	Letter
	phenylalanine	serine	tyrosine	cysteine	U
lυl	phenylalanine	serine	tyrosine	cysteine	С
	leucine	serine	stop	stop	A
	leucine	serine	stop	tryptophan	G
	leucine	proline	histidine	arginine	U
c	leucine	proline	histidine	arginine	С
	leucine	proline	glutamine	arginine	A
	leucine	proline	glutamine	arginine	G
	isoleucine	threonine	asparagine	serine	C
A	isoleucine	threonine	asparagine	serine	C
	isoleucine	threonine	lysine	arginine	A
	(start) methionine	threonine	lysine	arginine	G
	valine	alanine	aspartate	glycine	C
G	valine	alanine	aspartate	glycine	С
	valine	alanine	glutamate	glycine	A
	valine	alanine	glutamate	glycine	G

7. Use the mRNA codon chart to determine the amino acid sequence for the DNA sequence below.

DNA –	TAC	GCT	CAC	AAA	CGC	ATC	
mRNA -							_
trna -							
amino acids							

8. Use the mRNA codon chart to determine the codons that would code for the amino acid tyrosine.

Of	0"
	or

9. If the mRNA sequence reads UCACCUACGGUG, what is the sequence of DNA that it was transcribed from?

DNA -			

An original gene sequence in DNA reads TACGTTCCCGAT.

Use the mRNA codon chart to determine the amino acid sequence coded for: 11. Re-write the DNA sequence assuming that a point mutation has occurred and the first G in the sequence is replaced with a T: Transcribe the DNA sequence into mRNA: Use the mRNA codon chart to determine the amino acid sequence coded for: How did the point mutation affect the polypeptide chain? 12. Rewrite the DNA sequence assuming that a frameshift mutation has occurred and the first C in the sequence is deleted. Transcribe the DNA sequence into mRNA: Use the mRNA codon chart to determine the amino acid sequence coded for: How did the frameshift mutation affect the polypeptide chain? 13. ABCDE → ABCEDE illustrates a mutation.	10. Transcribe the above sequence to mRNA:
G in the sequence is replaced with a T: Transcribe the DNA sequence into mRNA: Use the mRNA codon chart to determine the amino acid sequence coded for: How did the point mutation affect the polypeptide chain? 12. Rewrite the DNA sequence assuming that a frameshift mutation has occurred and the first C in the sequence is deleted. Transcribe the DNA sequence into mRNA: Use the mRNA codon chart to determine the amino acid sequence coded for: How did the frameshift mutation affect the polypeptide chain?	Use the mRNA codon chart to determine the amino acid sequence coded for:
Use the mRNA codon chart to determine the amino acid sequence coded for: How did the point mutation affect the polypeptide chain? 12. Rewrite the DNA sequence assuming that a frameshift mutation has occurred and the first C in the sequence is deleted. Transcribe the DNA sequence into mRNA: Use the mRNA codon chart to determine the amino acid sequence coded for: How did the frameshift mutation affect the polypeptide chain? 13. ABCDE → ABFDE illustrates a mutation.	
How did the point mutation affect the polypeptide chain? 12. Rewrite the DNA sequence assuming that a frameshift mutation has occurred and the first C in the sequence is deleted.	Transcribe the DNA sequence into mRNA:
12. Rewrite the DNA sequence assuming that a frameshift mutation has occurred and the first C in the sequence is <u>deleted</u> .	Use the mRNA codon chart to determine the amino acid sequence coded for:
first C in the sequence is <u>deleted</u> . Transcribe the DNA sequence into mRNA: Use the mRNA codon chart to determine the amino acid sequence coded for: How did the frameshift mutation affect the polypeptide chain? 13.ABCDE → ABFDE illustrates a mutation.	How did the point mutation affect the polypeptide chain?
Use the mRNA codon chart to determine the amino acid sequence coded for: How did the frameshift mutation affect the polypeptide chain? 13.ABCDE → ABFDE illustrates a mutation.	
How did the frameshift mutation affect the polypeptide chain? 13.ABCDE → ABFDE illustrates a mutation.	Transcribe the DNA sequence into mRNA:
13.ABCDE → ABFDE illustrates a mutation.	Use the mRNA codon chart to determine the amino acid sequence coded for:
	How did the frameshift mutation affect the polypeptide chain?
	13 ARCDE -> AREDE illustrates a mutation
	14. ABCDE → ABCFDE illustrates a mutation.