Unit 4: Evolution and Classification Module 10: Evolution

NC Essential Standard:

• 3.4 Explain the theory of natural selection as a mechanism for how species change over time.

Doesn't evolution mean that men came from monkeys?

NO, NO, NO!!! Evolution, simply defined, means CHANGE over time.

We can look at evolution in 2 ways:

- MACROEVOLUTION how do new species originate
- MICROEVOLUTION how do species change over time

Scientific consensus is that microevolution is a fact – species change over time. Scientists believe that these small changes can lead to bigger changes and the eventual development of new species – macroevolution.

- I. How could life have begun on a lifeless Earth?
 - A. Abiogenesis / Spontaneous Generation

Abiogenesis is the idea that life came from					
material. This idea is sometimes called spontaneous					
generation.					
The envir	onment of the early Earth may have provided a				
	material. generati				

The environment of the early Earth may have provided a
unique set of conditions that allowed to occur
Researchers now believe that the early atmosphere may
have been similar to the vapors given off by modern
volcanoes:
(note the absence of free
atmospheric oxygen).

_			
(ia	CAC	thon	_

Gases now =

What was found in the "primordial soup"?

a.	Oparin developed a theory to explain the development
	of life on earth. His theory hypothesized that due to
	the chemicals in the atmosphere, the lack of free
	oxygen, and intense energy from lightening and
	volcanoes,
	At this time in earth's history
	the earth was covered by water. Therefore, this
	essential first step in the development of life must have
	occurred in the oceans. This supports the idea that life
	originated as a " primordial soup " in the
b.	Miller and Urey designed an experiment to test
	Oparin's "primordial soup" hypothesis. They were able
	to successfully mimic the proposed conditions of early
	earth in the laboratory. Up to 4% of the carbon was
	converted to (the building blocks
	of proteins). This experiment has been replicated
	numerous times.

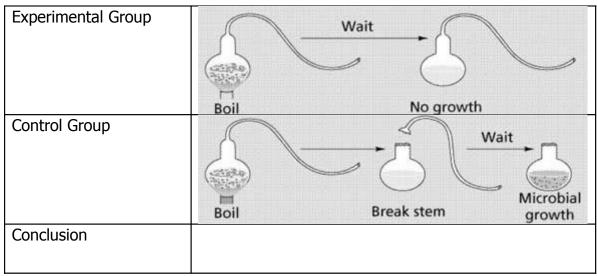
1. Once life was established in very simple cells, biogenesis

must come from life (biogenesis).

_____ to test his hypothesis that life

B. Biogenesis

began. Biogenesis is the ________. For a long time people believed that non-living material could produce living things (spontaneous generation). For example, it was a common belief that fish arose from the mud in the bottom of a river.


a. Francesco Redi set out to ______ the theory of spontaneous generation/abiogenesis. He developed a

Redi's Experiment:

	Control Group	Experimental Group	
Independent Variable			
Constant	Rotting meat	Rotting meat	
Observations	Flies entered jars, landing	Flies were unable to	
	on the meat	enter the jar	
Results	Maggots developed on	No maggots developed	
	meat	on meat	
Conclusions			

- b. After the development of the microscope and thus the discovery of microorganisms, Redi's work was called into question. Did the microscopic organisms come from a ______ in the air or did biogenesis hold true at all levels?
- c. Louis Pasteur designed an experiment to disprove spontaneous generation for ______.

Pasteur's Experiment:

vilenski.org/.../ historyoflife/pasteur.html

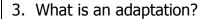
C. The evolution of cells

Control Group 129

		1.	Ba	sed on the conditions proven by Miller and Urey,		
Evolution of prokaryotic cells (heterotroph hypothesis)				entists developed the heterotroph hypothesis to		
			ex	plain the evolution of		
1.			a.	The first cells would have been prokaryotic (no		
				nucleus), (does not require oxygen), and		
2.				(must take in nutrients). Prokaryotic		
			heterotrophic cells are the simplest cells and there most likely to evolve first. The lack of free atmost			
3.						
				oxygen would have required an anaerobic cell.		
			b.	Over time prokaryotic cells evolved,		
				allowing for the release of free This		
	The effect of		profoundly changed earth's environment and led to			
	photosynthetic cells:			development of an ozone layer.		
	1.		c.	The production of oxygen led to conditions that		
				favored the evolution of, prokaryotic cells		
	2.	2.	Ва	sed on the idea of biogenesis and current research in		
	What is abiogenesis?					
	J					
	2. What were the conditions of	the early	v at	mosphere?		
			,			
-	B. What □₩::::□ s are cre	dited wit	th d	eveloping and supporting the theory		
	of th			eveloping and supporting the theory		
	ST COMP	Laran.				
	What S.					
	ir Wildt is siegenesis.					
_	What two scientists disprove	ad coonts	nac	ous generation using controlled		
	experiments?	a sporta	11100	das generation dainig controlled		
	слренитена:					
6	5. What does the heterotroph	nynothes	is e	xnlain?		
	. What does the neterodroph	iy pouries	15 C	Apiaii.		

7. What does the endosymbiont hypothesis explain?

II.	How did all	of life on Earth come from a few cells?
	A. Theory	of Evolution
	1.	is credited with developing the theory of
		evolution, but there were many people that contributed
		ideas upon which he built his own. Darwin also developed
		his ideas based on his travels as the ship naturalist on the
		H.M.S. Beagle. Of particular interest to Darwin were the
		animals of the Galapagos Islands.
	2.	In 1859, Darwin and Alfred Wallace jointly proposed that
		by a process of natura
		selection . The theory can be described as a process:


Steps of Natural Selection
1.
2.
3.
4.

A body-builder's large muscles would NOT be an adaptation because....

	a.	Variation of traits within the population leads to				
		different Some variations are better				
		suited to the current conditions of the environment.				
	b.	Overproduction in populations leads to				
		for limited resources (food, for example).				
	c.	Natural selection favors the phenotype				
		at the time. This does not necessarily mean that those				
		struggling die, but will be in a poorer condition.				
	d.	The survival (or better success) of the best				
		adapted individuals leads to				
		The variations will be passed on to the				
		offspring. Over time, if the environment does not				
		change, those favorable variations will be seen more				
		frequently in the population because nature has				
		"selected" that trait.				
3.	Cei	ntral to the theory of natural selection is the idea of				
	ada	aptations. An adaptation is any that				
	sui	ts an organism to its natural function in the environment				
	(its	s niche). There are three basic types of adaptations:				
	a.	Examples of adaptations are defensive				
		structures, camouflage, and mimicry. Typically,				
		occurs when a harmless species (mountain				
		king snake) resembles a harmful species (coral snake)				
		using coloration.				
	b.	Examples of adaptations are herding,				
		schooling, and growling				
	c.	Examples ofadaptations are enzymes,				
	oxygen-binding of hemoglobin, and sight.					

Ch	ieck	Yo	urs	elf
1.	Who	is	cre	dite

- 1. Who is credited with developing the theory of natural selection?
- 2. List the four steps in the process of natural selection.

_				
R	Mecha	nicmc	of Evo	Justion
D.	IMECHA	11 1151115	OLIVO	111111111111111111111111111111111111111

1	. Individuals don't evolve;	·	The populatio
	is the smallest unit of evolu	tion because acc	quired traits in
	an individual cannot be pass	sed on (inherited	d by offspring).
	However, different traits alr	eady present in	a population
	can be "	", changing the	e population.

2. Evolution occurs when the **gene pool** (all of the genes of a population) changes. A change in genotype may lead to a change in phenotype.

а.	Mutations are	and may lead
	to a new phenotype. Mutations provide	the
	for evolution – diversity. I	For example, a
	mutation causing white fur in Arctic foxe	s may lead to
	better camouflage in winter.	

b. The environment also plays a key role in evolution.

_____ are natures "selection forces"

that act upon the phenotype ranges caused by genes.

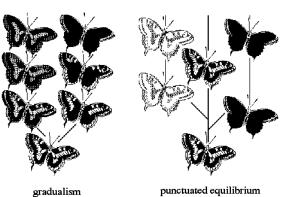
There are three basic patterns by which natural selection occurs:

Mutations →	
	in
	_ →
change in	
	

Stabilizing selection favors the "______"

phenotype in a population.

海 都微
ii. Directional selection favors
of the "typical" distribution.
iii. Disruptive Selection favors
of the "typical" distribution.
w3.dwm.ks.edu.tw/bio/ activelearner/18/ch18c6.html
3. Speciation is the A
species is defined as a group of organisms that can
Speciation occurs when a
population is separated, usually due to a
, and natural selection changes the population
so much the two groups could no longer interbreed.
Therefore, geographic isolation leads to reproductive
isolation.


Three types of Natural Selection:

1.

- C. Timeframes of evolution differ based on the environment and the population. The fossil record provides evidence for two rates of speciation:
 - 1. **Gradualism** describes speciation that occurs over a _____ due to the accumulation of small changes.

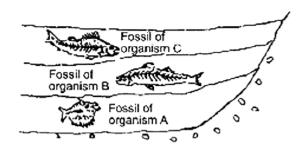
Venn Diagram: (Gradualism vs. Puntuated Equilibrium)

<u>.</u>	Punctuated equilibrium describes speciation that occurs		
	in	that may be separated by 1000's of	
	years of stability.	The primary stimulus is environmental	
	change.		

abyss.uoregon.edu/.../ lectures/lec09.html

Check Yourself!

- 1. Why can't individuals evolve?
- 2. What provides the raw material for evolution?
- 3. What are the three types of natural selection?
- 4. What is speciation?
- 5. What condition leads to reproductive isolation?
- 6. Name the two time frames for speciation.



			•	_	
1)	-v/a	$\Delta n c \Delta$	TOP.	-v	lution
υ.	LVIU		IUI	Lvv	IUUUII

1.	Fossil evidence provides an of early life.
	Fossils can include any evidence of life, such as imprints
	and remains of organisms. This evidence must be
	interpreted to form an overall picture of how species have
	changed over time (evolved). By examining the fossil
	record, scientists have concluded that evolution happens in
	a pattern and life emerged from sea to
	land. Fossils must be dated to help establish a time frame
	for the existence of a species. There are two methods of
	determining the age of fossils.

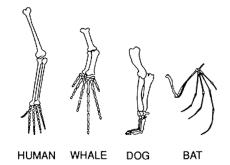
a. In **relative dating** the exact age of the fossil cannot be determined, only the order of appearance as
 ______ found in nearby rocks.
 Fossils occur in layers of sedimentary rock. The fossils near the top will be ______ than fossils in lower layers of rock.

Explanation of the fossil diagram:

www.ekcsk12.org/science/ regbio/evolutionqz1.html

b. **Radioactive dating** gives a more _____ using the natural decay of radioactive isotopes in organisms.

•	Biochemical similarities include com	parisons of	DNA
	and the resulting	for certain	shared
	proteins. This is considered one of the		and
	objective types of evidence used to dete	ermine evolu	utionary
	relationships. In general, the		_ found
	between two species, the	the evolu	utionary
	relationship.		


Explanation of the amino acid sequence diagram:

Species	Sequence of Amino Acids in the Same Part of the Hemoglobin Molecules
Human	Lys-Glu-His-Iso
Horse	Arg-Lys-His-Lys
Gorilla	Lys-Glu-His-Lys
Chimpanzee	Lys-Glu-His-Iso
Zebra	Arg-Lys-His-Arg

www.ekcsk12.org/science/ regbio/evolutionqz1.html

- 3. Shared **anatomical structures** supports some type of evolutionary relationship.
 - a. Structures with a ______ are called homologous structures. A similar bone arrangement, even if the functions are different, supports evolution from a ______.

Explanation of the bone diagram:

www.ekcsk12.org/science/ regbio/evolutionqz1.html

			Structures that perform the same function (ex. flying)		
			but are very different an	atomically (ex. bird wing vs.	
			butterfly wing) are called	d analogous structures. This	
	Example of vestigial structure:		supports evolution in	though not	
	Structure.		from a recent common a	incestor.	
		c.	Vestigial structures (ex	. appendix or tail bone in	
			human) are	in that organism, but may	
			represent a link to a prev	vious ancestor.	
1. N	ck Yourself! Iame the two methods by vectors and the two methods by vectors are the two methods by vectors. The control of th	ies support th	e theory of evolution?	suggest about two species?	
	III. C	oes evolution	still happen today?		
	Д	A. As long as	variation, overproduction,	competition, natural selection	
		and mutation	ons occur, evolution will o	ccur. Because evolution	
		leading to s	speciation happens over s	uch a long period of time,	
	B	is observab resistance 1. Fai	e to: rmers use: pulation of insects, some	For example, the evolution of to eliminate insects. In a individuals will possess	
				nicals. When the chemicals are	
		apı	pilea, the individuals with	genetic immunity will	

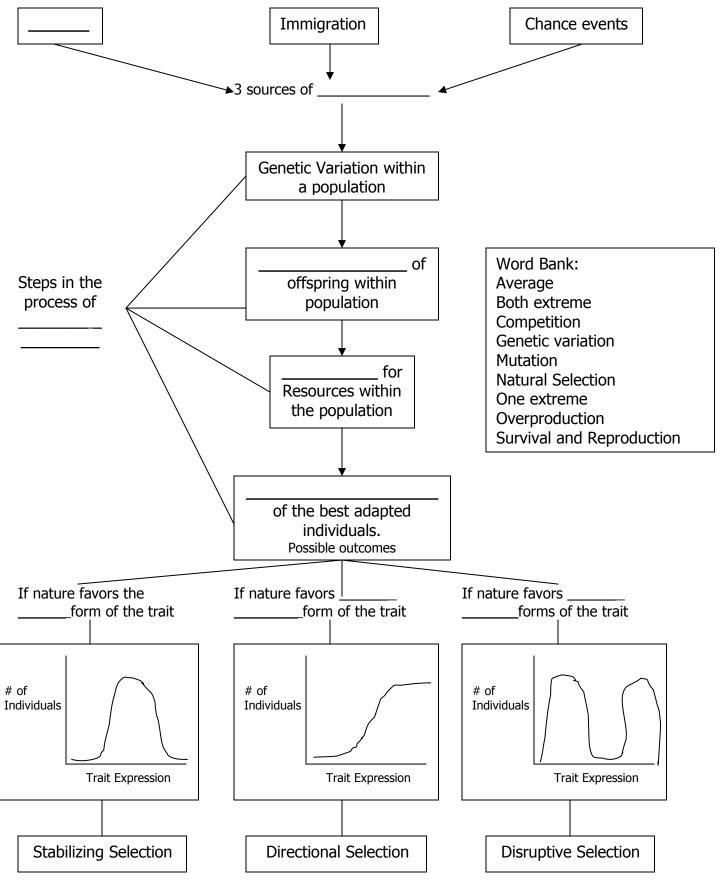
_____, passing this resistance to the next

generation of offspring. Over time, more individuals are

born with this immunity, rendering the pesticide useless.

become more and more resistant. The overuse of

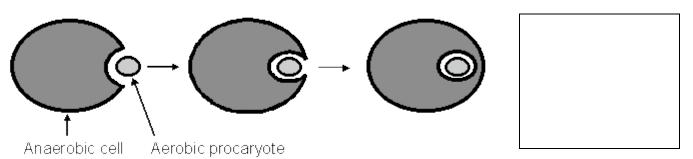
antibiotics has led to many resistant strains of bacteria.


	2are drugs that fight bacterial infections. Within
Definition of antibiotic	any population there is genetic variation. In the case of
resistance:	antibiotic resistance, some bacteria are genetically more
	to the antibiotic than other bacteria. If the
CAUSE of resistance:	amount of antibiotic delivered is too low or the full course
	not completed, only those least resistant will die. The

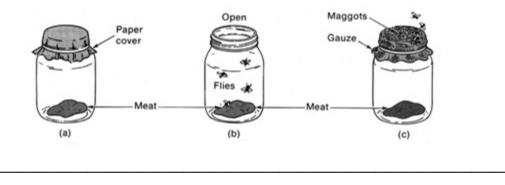
surviving, ______. With future applications of antibiotics the population is selected to

Check Yourself!

- 1. What is a pesticide?
- 2. Why do some insects become resistant to pesticides?
- 3. What is an antibiotic?
- 4. What has led to the many resistant strains of bacteria?


Unit 4 / Module 10 **Problem-Solving Set**

1. An explanation for the evolution of the first cells is called the Heterotroph Hypothesis. Literally translated, heterotroph means other feeder. What does this tell us about how the earliest cells obtained food?


2. Sequence the evolution of cells according to the heterotroph hypothesis:

3. The endosymbiont hypothesis is a theory that explains how eukaryotic cells may have evolved from prokaryotic cells. Based on the diagram below, what might the smaller aerobic prokaryote have eventually become?

4. While the earliest cells may have arisen through spontaneous generation, this theory has been disproven for life as it continues. Explain how the experiment shown below helped to disprove spontaneous generation.

141

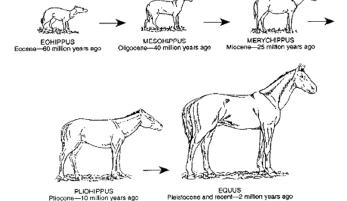
5. Life changes over time through natural selection. Sequence the steps in the evolution of a long neck in giraffes according to the theory of natural selection.

Step #	Explanation
	In a population of giraffes, there is variation in neck length. Some will have
	short necks, some medium, and some long.
	Over time, more long-necked giraffes will survive, reproduce, and pass their
	genes to the next generation.
	The giraffes with the longer necks will be able to reach food in the trees
	when food on the ground becomes scarce.
	Because there are more giraffes born than there are available resources,
	the giraffes will have to complete for food.

- 6. Natural selection results in adaptations. List 3 <u>specific</u> adaptations in plants or animals. For example, you might say that porcupines have quills for protection from predators.
 - a.
 - b.
 - c.

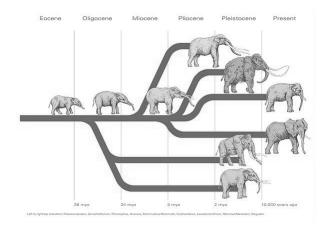
7. For each of the following scenarios, identify the <u>type</u> of natural selection that is occurring in that environment AND draw a graph of the selection.

Example	Type of Selection	Graph
In woodpeckers, the birds with the longest bills get the most insects. Those with medium bills can't get quite enough to thrive, and those with the shortest bills have little chance of survival.		
In some species of spiders, medium size is best. The smallest are unable to successfully compete for resources and the largest are easily spotted by predators.		
Limpets are shelled invertebrates that attach themselves to rocks. In the areas that they are found, the rocks are generally quite light in color or quite dark. Therefore, the light and dark colored limpets camouflage well on these rocks, while those medium in color are easily spotted by predators.		


8. Natural Selection can result in the evolution of new species. Read the paragraph and answer the questions that follow:

Along the North rim of the Grand Canyon lives the black Kaibab squirrel. Across the canyon on the opposite rim lives the Albert squirrel. Both species have big, tufted ears. However, the Kaibab has a flashy white tail and the Albert has a grey tail and body and a white belly. Scientists believe that these two different species of squirrels were once one population that was divided as the Grand Canyon developed. Through natural selection, the squirrels on either side of the canyon developed different characteristics. These two species of squirrel are separated by an environment that is totally different than on either rim of the canyon. The temperature on the rims is cool, but in the canyon it is much warmer and drier. Therefore, the squirrels do not cross the canyon and the populations remain separated.

a. What isolates the populations of the Kaibab and Albert squirrels?

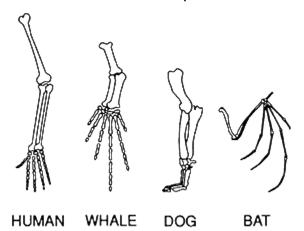

b. Over time, geographic isolation can lead to ______ isolation.

- c. What is the term for the development of a new species?
- 9. The fossil record gives us evidence for evolution by showing us how living organisms have changed over time.

The fossil record of horses shows natural selection by *gradualism*. Explain what this means.

The fossil record of elephants shows natural selection by *punctuated equilibrium*. Explain what this means.

10. Biochemical similarities also provide evidence for evolution. The chart below shows similarities in amino acid sequences in hemoglobin for several species.


	87	88	89	90	91	92	93	94	95	96	97	98	99	100	101
Human Chimpanzee Gorilla Rhesus morikey Horse Kangaroo	THR THR THR GLN ALA LYS	LEU LEU LEU LEU LEU	SER SER SER SER SER SER	GLU GLU GLU GLU GLU	TEN FEN FEN FEN FEN	HIS HIS HIS HIS HIS	CYS CYS CYS CYS CYS	ASP ASP ASP	LYS LYS LYS LYS LYS LYS	LEU LEU LEU LEU	HIS HIS HIS HIS HIS	VAL VAL VAL VAL VAL	ASP ASP ASP ASP ASP	PRO PRO PRO PRO PRO PRO	GLU GLU GLU GLU GLU
	102	103	104	105	106	107	108	109	110	111	112	113	114	115	116
Human Chimpanzee Gorita Rhesus monkey Horse Kangaroo	ASN ASN ASN ASN ASN	PHE PHE PHE PHE PHE PHE	ARG LYS LYS ARG LYS	LEU LEU LEU LEU	LEU LEU LEU LEU	GLY GLY GLY GLY GLY	ASN ASN ASN ASN ASN ASN	VAL VAL VAL VAL ILE	LEU LEU LEU LEU	VAL VAL VAL ALA VAL	CYS CYS CYS CYS LEU fl.E	VAL VAL VAL VAL VAL GYS	LEU LEU VAL LEU	ALA ALA ALA ALA ALA	HIS HIS HIS ARG GLU

Human hemoglobin is being used as the standard for comparison.

Species comparison	# similarities	# differences
Human/Chimpanzee		
Human/ Gorilla		
Human/ Rhesus monkey		
Human / Horse		
Human/ Kangaroo		

- a. According to the information in the chart, which species have the closet relationship to humans?
- b. Which species is least related to humans?

11. Structural similarities also provide evidence for evolution.

a.	Describe how the bones shown in the diagram are structurally similar to one another.
b.	What does the diagram tell us about the relationship of human to the other species pictured?